
Author Preprint 

© 2013 IEEE 

 

Title: "A visual robot-programming environment for multidisciplinary education"  

 

Authors: Jennifer Cross, Christopher Bartley, Emily Hamner, Illah Nourbakhsh 

 

Final Version: https://doi.org/10.1109/ICRA.2013.6630613  

 

Citation:  

J. Cross, C. Bartley, E. Hamner and I. Nourbakhsh, "A visual robot-

programming environment for multidisciplinary education," 2013 IEEE 

International Conference on Robotics and Automation, Karlsruhe, 2013, pp. 

445-452. 

 

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 
 



A Visual Robot-Programming Environment for Multidisciplinary

Education

Jennifer Cross, Christopher Bartley, Emily Hamner and Illah Nourbakhsh

Abstract— Arts & Bots is an educational program that
aims to broaden diversity and participation in technology by
integrating arts and crafts with robotics. Arts & Bots is a
flexible program that can be integrated into in-school and out-
of-school programs in many subject areas. This paper describes
the visual programming environment developed for Arts & Bots
and its goals of low barriers to entry, classroom compatibility,
supporting student acquisition of computational thinking skills,
and enabling complex robot behaviors. The authors also com-
pare and contrast the programming environment with other
popular visual programming environments, namely Scratch,
Alice and LEGO NXT-G.

I. INTRODUCTION

Over the past decade, robotics has become an increas-

ingly popular vehicle for supporting student engagement by

allowing students to learn about technology both inside the

classroom and in extracurricular activities. From the widely

available LEGO MINDSTORMS System to popular national

robotics competitions, such as US FIRST and Botball, the use

of robotics to attract students and instruct them in STEM-

related topics has become very common.

In order to provide the benefit of robotics to a broader

group of students, who may be uninterested or intimidated

by the aforementioned activities, robotics programs and kits

such as Robot Diaries[1], Artbotics[2], and PicoCricket [3]

were designed to incorporate arts and craft materials into

the supplies provided for creating robots. Common craft

materials serve a number of purposes in these programs.

First, the inclusion of crafts materials is a more gender

neutral material than, for example, LEGO components or

erector sets which boys often have many years of experience

working with prior to their robotics experiences [3]. Crafts

are familiar and approachable to most students who have uti-

lized similar materials in previous school projects regardless

of their level of interest in technology [1]. The processes that

are most commonly associated with arts and craft materials

are also intrinsically creative which further supports their use

in encouraging creativity in the design process.

Initial pilots with out-of-school groups showed that Robot

Diaries was appealing and engaging for students as well as a

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. (0946825) and
the NSF Broadening Participation in Computing program under Grant No.
(0940412). This work was supported in part by a Graduate Training Grant
awarded to Carnegie Mellon University by the Department of Education
(#R305B090023).

Jennifer Cross, Christopher Bartley, Emily Hamner and Illah Nourbakhsh
are with the Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA 15213, USA. Email: {jcross1, cbartley, etf, illah} AT

andrew.cmu.edu.

valuable learning experience[1]. However, self-selection still

kept many students from participating in Robot Diaries. In

order to engage a wider audience of students, we began to

work with teachers to incorporate Robot Diaries into school

curricula. The flexibility of the craft materials and robot

kit allows teachers to integrate Robot Diaries into a variety

of course topics, from poetry to anatomy to history[4].

Now called Arts & Bots, the program has grown into a

popular tool for introducing K-12 students to robotics while

also increasing engagement with topics from various school

subjects. Since 2006, approximately 1000 students and 85

educators have participated in Arts & Bots programs in

Pennsylvania, Ohio, West Virginia, and even international

locations in Brazil and the United Kingdom.

II. ARTS & BOTS

The primary goal of Arts & Bots is to increase techno-

logical fluency while smoothly integrating into classrooms

of diverse disciplines. Technological fluency is the ability

to manipulate technology creatively and for one’s own use.

By focusing on fluency-building activities, which encourage

creativity and personal adaptation of technology, Arts & Bots

aims to engage diverse student populations with technologies

that might otherwise be interpreted as irrelevant to their

personal interests.

Arts & Bots uses craft materials, a flexible hardware kit, an

interactive software environment, and adaptable curriculum

to empower students to create provocative, tangible sculp-

tures with robotic actuation and sensing. The Arts & Bots

hardware kits available for sale consist solely of the robotics

components that are required for the creation of these craft-

based robots. The craft materials required to complement the

hardware are selected and provided by the teachers to permit

them to adapt the materials to their specific project. Arts

& Bots hardware kits include outputs chosen to encourage

the creation of compelling narrative robots. These outputs

include: DC motors, hobby servos, RGB LEDs, single color

LEDs and vibration motors. Sensors, to support interactions

with the robot, include: temperature, light, sound level and

IR distance sensors and a potentiometer.

These materials permit the construction of a varied set of

robots with a high level of morphological diversity. However,

the nature of the Arts & Bots microcontroller, called the

Hummingbird, allows us to make a number of assumptions

about the robots. First, because the Hummingbird is always

tethered to a computer, the robots created with the kit have

limited mobility and thus are often designed to sit on a flat

surface or hang from a wall. Second, while the availability



of craft materials permits essentially limitless mechanical

and aesthetic variation, the robots have reasonably uniform

electrical systems since each of the fourteen outputs and four

sensor inputs is either utilized or not in each robot. This paper

describes the programming environment that was developed

based on the goals of Arts & Bots and these assumptions.

III. PROGRAMMING ENVIRONMENT GOALS

The Arts & Bots program needed to provide an appropriate

software environment to facilitate the programming of robot

behaviors and interactions, as well as specifically meet the

following goals aligned with the overall purpose and needs

of the Art & Bots program.

Computational Thinking - In order to support the primary

purpose of Arts & Bots, which is the development of

student technological fluency, the Arts & Bots program-

ming environment should strive to support the acquisition

of computational thinking skills. To do this, the program-

ming environment should permit the exploration of common

computer science practices such as creating reusable code

and understanding basic logical structures such as if-else

conditionals.

Classroom Compatibility - Another key aim of Arts &

Bots, and thus the programming environment, is to support

the goals of the educator implementing the system in a multi-

disciplinary fashion. In a language arts class studying poetry,

Arts & Bots must encourage deeper student engagement with

poetry. In an anatomy class studying muscles, Arts & Bots

must help students refine their understanding of the mechan-

ics of the muscloskeletal system. This means that, while the

ideal programming environment should have the flexibility

to be adapted for different types of projects, it should not

be specialized for any singular course topic. Additionally,

the programming environment should be compatible with

varying computer configurations in order to allow schools

to utilize Arts & Bots without the burden of purchasing

additional equipment.

Low Barrier to Entry - Following on the intention of fitting

seamlessly into many different educational environments, it

is also important to minimize the amount of time required to

learn how to create programs for Arts & Bots. Doing so min-

imizes student distraction from the course topic and allows

teachers unfamiliar with computer programming languages

to instruct students with the confidence required to engage

and assist the students. Lower barriers also help to promote

technological fluency by supporting students’ gradual acqui-

sition of technological knowledge without damaging their

confidence by straining their developing competency.

Compelling Behaviors - While it is important to simplify

the complexity of learning to program, it is also critical

that the programming environment not over-simplify the

capabilities of the robots to such a degree that students can

no longer achieve their desired narratives. A certain degree

of flexibility, and thus complexity, is needed to maintain the

desired degree of engagement.

These goals present a challenging design space, where

the values of certain goals are frequently in direct oppo-

sition to other goals. Being classroom-compatible requires

a flexible nature that is aligned with educator goals and

does not distract students from that purpose, while en-

couraging computational thinking could easily cause that

type of distraction. Lowering the barriers to entry could be

accomplished through simplifying the software’s capabilities,

but that simplification could potentially reduce the student’s

ability to create compelling narratives and behaviors.

IV. IMPLEMENTATION

In order to meet these goals, the developers of the Arts

& Bots programming environment decided to implement a

visual, or graphical, programming language and environ-

ment. In order to permit the future expansion of this visual

programming environment beyond use with the Arts & Bots

hardware, it is called the CREATE Lab Visual Programmer.

The CREATE Lab Visual Programmer is an open-source

application written in Java and distributed via Java Web Start

[5].

Visual programming languages (VPLs) are defined as

those that use greater than one dimension for communicat-

ing language semantics. VPLs commonly benefit from four

features described and defined by Burnett as concreteness,

directness, explicitness and immediate visual feedback [6].

Concreteness reflects that some aspects of the program

are able to be represented as specific objects or values.

Directness indicates that the programmer has a feeling of

direct control or manipulation and that the mapping from

the problem space to the program space is short and clear.

Explicitness indicates that some of the semantics of VPLs

are explicitly stated in the environment. Finally, immediate

visual feedback means that changes to the program are

automatically made clear to the programmer.

Based on the goal to lower the barrier to learning to use

the CREATE Lab Visual Programmer, the developers imple-

mented a two-step programming environment to provide a

scaffold for the creation of robot programs. Building from

the idea of a narrative-based robot, these two steps were

implemented to reflect the process of designing story scenes

and combining these scenes with storyboarding.

The aspect of the CREATE Lab Visual Programmer used

to perform the first step is referred to as the Expression

Builder, which students use to create static poses or output

states for the robot which are called expressions, referring to

an emotional expression (Figure 1). Static poses are not static

in the sense that no robot component is moving, but rather

expressions consist of a partial definition of the states of each

output on the Hummingbird. For example, one expression

could be used to describe when the robot is angry. This

expression might set both RGB LEDs to glow red while

one vibration motor is turned on to full power to create

a growling sound. Another expression on the same robot

might be used to demonstrate a happy emotion where the

two RGB LEDS could be set to a calm green-blue color,

and the vibration motor could be turned off.



Fig. 1. [Left] A screenshot of the Expression Builder. In the center is an expression block shown in yellow surrounded by a cartoon representation of
the Hummingbird in blue. Surrounding the Hummingbird are a number of control panels, which control the attributes of each enabled output. On the
right-hand side is a palette where saved expressions are displayed. [Right] A screenshot of the Sequence Builder. Saved expressions and sequences can be
dragged from the palette on the right and dropped into the sequence being built in the center.

The aspect of the CREATE Lab Visual Programmer used

to perform the storyboarding-step is referred to as the

Sequence Builder and is used to define robot behaviors

by joining expressions and other program elements into

combinations of robot actions that occur over time (Figure 1).

These storyboards are referred to as sequences since they

are most commonly comprised of a time-sequential group of

expressions. A basic example of a sequence would be to use

the two earlier mentioned expressions and create a sequence

causing the robot to alternate from “happy” to “angry” and

back to “happy”. In order to fully describe this behavior,

the time delay between each expression transition must be

defined in the program, for example the robot could display

“happy” for two seconds, then “angry” for half a second

and finally return to a “happy” expression. Once a sequence

has been created, it is possible to reuse that sequence as a

component, called a subsequence, within a larger or more

elaborate sequence. The Sequence Builder also provides

access to a list of additional structural elements available for

creating more complex sequence behaviors. These include an

if-else conditional based on sensor readings called a sensor

structure and a repeating for-loop called a counter structure.

Both the Expression Builder and the Sequence Builder

are provided inside the same environment window. The

two builders are located in different tabs that are navigable

from the top of the window. Both windows also have a

persistent sidebar palette that contains a file list where all

existing expressions are shown. The Sequence Builder also

has a similar list showing existing sequences and the list

of available structural elements. The Expression Builder and

the Sequence Builder are demonstrated in the accompanying

video. Below are presented three key features that the CRE-

ATE Lab Visual Programmer implements to meet the stated

design goals.

A. Real World Grounding

The software environment emphasizes the use of clear

physical metaphors to aid in the process of recognition for

students who are programming an Arts & Bots robot for the

first time. Following the creation of a robot, each student

will be fairly familiar with the functionality and appearance

of the physical hardware components of the Hummingbird

kits. This existing knowledge is utilized as a foundation

for the introduction of the programming task. This idea is

closely related to concreteness, in that select components of

the interface are designed to imply a direct relationship to

physical components and actions.

In order to maximize the concreteness of the environment,

the developers also chose to omit the inclusion of variables

in the language since the abstract nature of variables is not

required to create compelling narratives and would require

a level of additional complexity that would distract from

most class projects and raise the barrier to entry. The

barriers would be especially high for younger students in

Piaget’s concrete operational stage of development (ages 7-

11), who are capable of thinking logically about concrete

objects and concepts but are still developing capabilities for

abstract thinking[7]. While the inclusion of variables could

expand the abilities of the programming environment for

older students, there are no immediate plans to add them, as

the students in pilot implementations have not demonstrated

a need for them.

Upon opening the software, the Expression Builder Hum-

mingbird image dominates the center of the window and is

accompanied by prompting text stating “Enable an Output

Port”. The output ports on the Hummingbird are repre-

sented in the software as checkboxes located and labeled

in a manner identical to their counterparts on the hardware

Hummingbird. Building from this, each output type is also

associated with a representative icon that is used on both

the hardware Hummingbird and throughout the software

(Figure 2). These icons serve to help students recognize

either the appearance or function of each output throughout

the software. There is also a checkbox that can be used to

enable audio from the computer’s speakers to be incorporated

into an expression.



Fig. 2. The icons used to represent Hummingbird outputs and inputs.

Fig. 3. An example motor control panel has a slider bar that has a stop
button located above its center location. This button is used to set the
motor speed to zero. On either side of the button are silhouettes of tortoises
and hares moving away from the center that indicate that the slider is for
selecting speed and direction.

The action of checking an output port checkbox is a

metaphor for plugging a component into the Hummingbird.

Once checked, a control panel, i.e. a region representing

and controlling the attributes of that output, is shown in the

Expression Builder. The control panels contain at least one

slider bar that is used to set the state of that specific output

(Figure 3). Additional visual cues are also used to indicate

what result to expect from moving the slider. Once the slider

position is altered, the new output setting is immediately

reflected onto the physical robot. For the computer audio

control panel, instead of a slider, a keyboard is provided to

allow the selection of tones or the student can view a menu

of sound clips from which to select a sound effect.

Similarly, the metaphor of making a storyboard for a

narrative is the basis of sequence creation. By representing

expressions and subsequences as colorful blocks with titles

and icons representing the function, the sequence is able

to incorporate these elements in a way that is visually

similar to the frames of a storyboard. These elements are

stacked vertically in a snap-in-place sequential arrangement.

However, the use of sensor structures, which can be set to

act as if-else conditionals or while loops, can be used to alter

the control flow (Figure 4).

B. Live Feedback and Debugging

Another aspect that eases the process of learning to pro-

gram using the CREATE Lab Visual Programmer is that there

are no syntax errors that can be made in the environment.

Each control panel in the Expression Builder is designed

to have a one-to-one relationship with an output on the

Hummingbird. In using the control panels to set the output

value, it is not possible to select an out of range value. If a

number is typed in that is out of range, it is adjusted to be

either the maximum or the minimum allowable value. This

means that every expression is valid and executable. The

expressions are then combined using the Sequence Builder

with a click-and-drag interaction that allows each element

to be placed in the active sequence by snapping them into

a valid position. Syntax errors are also not possible when

implementing sensor loops in a sequence. Each sensor loop

Fig. 4. A screenshot of a sensor loop. Two drop-down menus are provided
to allow for the selection of a sensor type and a port number. The green
value bar beneath the menus shows the current live sensor reading as well as
the position of the threshold, in blue. If the sensor value is greater than the
threshold, the right hand pane is executed. If the sensor value is less, the left
hand pane is executed. The black arrow at the bottom of each pane allows
the programmer to decide whether, following the execution of the pane, the
program continues to the next element in the sequence or if it loops back to
check the sensor value again. This allows for the implementation of if-else

statements, while loops and infinite loops containing if-else statements.

has two drop-down menus, which allow for the selection of

a sensor type and a valid sensor port number. The sensor

threshold is also limited by its slider such that the threshold

is always within the range of the sensor values.

In order to assist in the debugging of semantic errors,

or errors where the program created does not do what

the student expects, the CREATE Lab Visual Programmer

features live visual feedback. While creating expressions,

the Hummingbird’s physical outputs immediately update to

match every change made on a control panel. This allows

for a rapid feedback loop where the student adjusts an

output value, gauges the effect that the adjustment had on

the physical robot and continues to modify the expression

values until the physical robot’s pose meets her needs.

Similarly, the continuous, live readings from the sensors

in the Sequence Builder make setting and testing threshold

values very straightforward. Once a threshold is selected,

the student can vary the sensed environmental condition, i.e.

temperature or light level, to ensure that the sensor reading

is above and below the threshold during the times that she

expects.

Debugging semantic errors in sequences is also aided

by the explicitness of the sequence execution flow. Each

program element is directly above and connected by an

arrow to the element that follows it during execution. It is

straightforward to interpret the sequence of actions that will



Fig. 5. Sequence execution flow can be viewed in real-time as the sequence
executes.

occur when the program is executed simply by following

the arrows. The time delay following an expression that

prevents the immediate execution of the following program

element is also explicitly written in the bottom portion of

each expression block. Along with the specified delay value

is a progress bar that, while the sequence is executing, fills

as the delay passes (Figure 5). Once an expression’s delay is

completed, its associated delay progress bar remains filled

until the sequence completes execution or that particular

expression is reset and re-utilized in a sensor or counter loop

structure. The sensor and counter loop structures also both

have similar highlight indicators that show which pane of the

sensor structure is executing and show a progress bar of how

many repetitions have been completed by the counter loop.

This filling and highlighting action helps students recognize

which expression or program element is executing while the

program runs, helping with both timing issues and determin-

ing where in the program the error occurs. Once the error

location is identified, it is possible to edit sequences even

while they are running, allowing for immediate corrections

which can lead to experimentation to correct the problem.

In order to further assist first-time programmers, who may

not yet know how to set the time delays, each delay defaults

to one second so that, on the first run, each expression lasts

long enough to be seen on the physical robot and tracked by

following the highlights.

C. Incremental Complexity

In order to meet the opposing goals of having a low barrier

to learning and having the level of complexity required to

create a compelling robot that incorporates computational

thinking, the CREATE Lab Visual Programmer was designed

to be highly scaffolded and supportive to novices and also

to allow more experienced users to push the limits of the

environment to create more elaborate robot behaviors.

The scaffolding is primarily reflected in the use of the

two-step programming process for making expressions sep-

arate from sequences. This separates the process of finely

Fig. 6. The “Human Seasons” poem-bot is seen from four sides. Shown
clockwise from the top-left: Spring-Childhood, Summer-Adulthood, Fall-
Maturity and Winter-Death. In the image of Winter-Death, the Hummingbird
and other hardware components are visible inside of the robot’s base.

controlling individual outputs from the high-level design of

the overarching robot action. In doing so, the CREATE Lab

Visual Programmer enforces the process of creating low-

level functions to be used in the primary program. This

segmentation also helps to lower the floor even further for

the youngest users, such as those in kindergarten, who are

not able to plan the creation of a custom sequence from start

to finish. One approach is to let the young students tinker

with the Expression Builder to customize the robot’s pose.

Another approach is to have the teacher create a number of

simple and clearly labeled expressions that young children

can assemble into their own sequences.

Beyond the benefits of the two-step programming ap-

proach, many other features of the CREATE Lab Visual Pro-

grammer permit the gradual integration of more complicated

computer science concepts. At the most basic level, a student

can create expressions that individually define the complete

output state of the robot and then combine these into a

sequence. These basic sequences are fully capable of provid-

ing a robot with an interesting narrative behavior, however

many improvements can be made by utilizing other features

of the environment. When the student becomes comfortable

with expressions, the counter structure can be introduced

as a way to make repetitive sets of expressions easier to

modify and interpret. Next, the use of sensor structures can

provide the added dimension of interactivity with the robot’s

surroundings. As sequences grow increasingly complex, the

idea of creating small pieces of testable, reusable code in

the form of subsequences can also become a valuable skill.

In the following section, some of these optional features are

implemented in a piece of example code written by a group

of eighth grade students.

V. CASE STUDY

The following case study is an unmodified example of

a robot built and programmed by a team of four 12- and

13-year-old students in an eighth grade Language Arts class

studying poetry. As part of their class, the students were



Fig. 7. The main sequence created for the “Human Seasons” poem-bot is
shown center. To either side are views of the contents of the subsequences;
to the left is the subsequence for rotating the platform 90 degrees and to
the right is the subsequence for the presentation of the Spring-Childhood
stanza.

asked to build robots to present the message and meaning

of a specific poem. The process of designing and decorating

the poem-bots allowed the students to explore the imagery of

the poems, while the process of creating sequences help them

explore the importance of time in dramatic presentations. The

robot designed, constructed and programmed by the team is

pictured in Figure 6. This robot was created to express the

poem “The Human Seasons” by John Keats which associates

the stages of a human life with the four seasons of the year.

The robot consists of two main structural components: a

base that contains all of the Arts & Bots hardware; and,

mounted on top of a DC motor, a round turntable divided

into four sections. Each of the sections is decorated to be

representative of both a season and the associated stage of

life. As the platform rotates to display each season, the

robot also activates an RGB LED spotlight to highlight

the season facing towards the audience. Additionally, the

robot’s sequence contained expressions with audio clips of

the students reading each stanza of the poem that played

when the sequence was executed. As each stanza is read, the

robot moves to the correct season and illuminates that season

with an appropriately colored light.

The sequences and expressions that these students created

for their robot demonstrate a good understanding of many

of the CREATE Lab Visual Programmer features mentioned

above. By looking at the program that they created, it is also

possible to conclude that the students gained an appreciation

for a number of the computer science concepts that Arts &

Bots aims to encourage.

A. Computational Thinking

In the example shown in Figure 7, the students de-

signed their primary sequence to be composed entirely

of subsequences, shown in green. The third subsequence,

titled “90degreerotationspeed-33”, is designed to rotate the

platform 90 degrees in order to turn to the next season.

This subsequence only uses expressions, which provide com-

mands to the DC motor, unlike another style of expression

that would control the entire robot. This demonstrates that the

subsequence was not designed to be used exclusively during

a single transition; instead, it shows that the students have put

effort into creating reusable code. In the main sequence, we

can see that they do indeed reuse this subsequence before

each new season. This saved them the time required to

recreate this behavior for each season and permits them to

quickly modify all of the rotation subsequences if they would

later decide to change the speed of rotation. This is all the

more valuable when using a DC motor since the speed and

timing aspects are critical to get right when the robot has no

feedback and the rotation is based on dead reckoning.

The other subsequence shown is used to perform the

Spring-Childhood stanza. The first expression starts playing

the audio performance. Since the delay for this expression is

set to .01 seconds, the counter structure begins to execute at

approximately the same time as the start of the audio. The

counter structure is then used to blink the RGB LED while

the audio is played. The use of the counter structure here is

a good indication that the students understood the value of

using a programmatic loop when performing a repetitive task.

One benefit to creating the season performance in its own

separate subsequence is that the students were then able to

run and debug each part of their program individually. This

means that it was possible to make improvements to each

season without needing to perform the full poem each time.

The application of computer science principles demon-

strated by these sequences and expressions is a good indica-

tor that the CREATE Lab Visual Programmer succeeded in

accomplishing the goal of increased computational thinking.

Perhaps more importantly than the gains deduced, students

in the class also self-reported changes in their relationship

with technology because of the project. One student stated

simply that “it made me confident about tecnology[sic]”

while another said “it made me feel more like I knew things

about it.”

B. Low Barrier to Entry

The experience of using the CREATE Lab Visual Pro-

grammer also caused students to change their perceptions

about the difficulty of programming a robot. One student

was able to build the skills required to program the robot

and reflected on the process by saying that “Programming

is very challenging but once you get used to it, it’s easy.”

Another student found the process to be easier than he expect

and explained that “I learned that even though programming

looks difficult it is actually easier than it seems.” This ease

of use and the process of building abilities to meet the

challenge of programming is indicative that the CREATE

Lab Visual Programmer successfully lowers the barrier to

robot programming.



TABLE I

PROGRAMMING LANGUAGE COMPARISON

Alice Scratch LEGO

NXT-G

Visual

Programmer

Character
Customization

Structured Flexible Structured Flexible

Behavior
Programming

Structured Flexible Flexible Structured

C. Classroom Compatibility and Compelling Behaviors

Students working on the poetry-bot project reported that

they thought that the Arts & Bots project aided their appre-

ciation of poetry. One student in the class explained that

“Poetry can sometimes be hard to understand but using

robotics and giving you a visual can help you understand it.

[sic]” The teacher was able to smoothly integrate the project

in with her curriculum and get the CREATE Lab Visual

Programmer installed and operating on all of the school-

provided laptop computers. During the final presentations of

the project, the class displayed eight unique poem-bots, each

of which was able to present its poem with an expressive

visual display. The experiences of this class are similar to

other classes that have integrated Arts & Bots into their

curriculum. This suggests that the CREATE Lab Visual

Programmer successfully achieved the goals of classroom

compatibility and enabling compelling behaviors.

VI. COMPARISON TO SIMILAR ENVIRONMENTS

There has been a great deal of work done on the devel-

opment of programming environments that are suitable for

first time programmers. Three of the most popular visual

programming environments currently used in schools and

extracurricular programs are Alice[8]; Scratch [9], [10]; and

LEGO MINDSTORMS NXT-G[11]. These languages, as

well as the Visual Programmer, all permit the completion of

a similar task: programming behaviors of virtual or robotic

characters through a graphical programming environment.

The Visual Programmer is distinguished from these lan-

guages, however, in considering how scaffolding structure

is balanced against flexible customization throughout the

programming process. An overview of these differences is

shown in Table I.

A. Alice

Alice is a language that allows students to create 3D

interactive graphics, including animations and games. To

create a program, students use an object-oriented approach

to select predefined 3D characters to add to the scene of

their animations. Using context menus, it is then possible

to select from a number of provided character functions or

actions. This selection-based approach provides structuring

which allows novices to explore the capabilities of the

characters without existing knowledge. This is similar to the

scaffolding utilized in the CREATE Lab Visual Program-

mer’s Expression Builder to introduce the capabilities of the

various outputs using the control panels as visual indicators

of actions. However, 3D Alice characters are difficult to

customize, while the Visual Programmer permits much more

flexibility in character creation by allowing students to build

unique robots.

A variation of Alice, called Storytelling Alice[12],

leveraged the idea of storytelling to create a motivation for

the creation of programs using the object-oriented approach.

Students involved with the storytelling tasks were found to be

more inclined to take future Alice courses and would spend

extra time to work on their stories over non-Storytelling

Alice. Arts & Bots and the CREATE Lab Visual Programmer

use a similar approach for motivation, focusing on the

creation of expressive robots and narrative programs.

B. Scratch

Scratch is a language that students can use to create

interactive multimedia projects, like games and interactive

stories, which incorporate 2D graphics, audio and video

components. Scratch also emphasizes the importance of

flexibility in character creation by supporting the student

in designing custom 2D characters called sprites. Similarly

motivated, the creation of unique physical robots in Arts &

Bots is not just encouraged but mandatory since the Arts &

Bots hardware components are entirely meaningless until a

robot is designed and built. Programs in Scratch are created

by snapping together command blocks that can control the

actions of sprites. While the method of assembling programs

from command blocks in Scratch is similar to how program

elements are combined into sequences with the CREATE Lab

Visual Programmer, command blocks focus on finer controls

of individual aspects of the sprites while expressions are

high-level state settings for the entire robot. Using command

blocks Scratch also permits more abstract programming

concepts like variables and data manipulation that are not

possible with the CREATE Lab Visual Programmer. These

differences allow Scratch programs to have greater flexi-

bility than CREATE Lab Visual Programmer expressions

and sequences, however learning these features can be time

consuming, making Scratch more suited to classrooms solely

focused on technology education.

Finally, Scratch also incorporates debugging and live

feedback features that are similar to those that are imple-

mented in the CREATE Lab Visual Programmer. The build-

ing block nature of Scratch command blocks prevents the

presence of syntax errors since non-compatible commands

cannot be combined. Scratch, like the CREATE Lab Visual

Programmer, also highlights the code as it is executed and

allows for live editing of programs at runtime to help identify

and correct for semantic errors.

C. LEGO MINDSTORMS NXT-G and RoboLab

LEGO MINDSTORMS NXT-G and its predecessor

RoboLab[13] are two similar visual programming environ-

ments that are used to program LEGO MINDSTORMS NXT

robotics kits in schools. These environments are both based

on the popular dataflow programming environment, National

Instruments LabVIEW, which is programmed by defining



how data and signals flow between various functional blocks.

Similar to the CREATE Lab Visual Programmer, both of

these environments are specifically designed to control phys-

ical robots built by the students. However, NXT-G has more

computational capabilities including variables, mathematical

functions and logic constructs.

LEGO MINDSTORMS has a more structured robot char-

acter creation process than that of Arts & Bots. Component

uniformity makes the construction of LEGO robots a more

defined process, and possible to accomplish by following

illustrated directions. At the same time, LEGO components

are comparatively more expensive than craft materials; this

deters most users from modifying LEGOs with non-LEGO

components. This leads to a trade-off where MINDSTORMS

robots are less customized and less personal than Arts &

Bots robots. MINDSTORMS robots are also limited to three

outputs whereas Arts & Bots robots can use up to fourteen.

Since students learning to use Arts & Bots will likely be

more experienced and confident using craft materials than

writing programs, a structured programming experience and

flexible, personalized construction is more suited to the

intended goals of Arts & Bots.

VII. FUTURE DIRECTIONS

In the future, further refinements are planned to increase

the functionality of the CREATE Lab Visual Programmer

and allow for easier integration with different classroom

environments. One of the most exciting features planned is

to allow programs to be exported from the CREATE Lab

Visual Programmer in the form of ready-to-execute Java

code. By allowing code to be exported, the CREATE Lab

Visual Programmer will ease the transition for students who

are looking to graduate to a more powerful, flexible, and

widely used programming language.

Meanwhile, the Arts & Bots project will continue to

focus on the implications of robotics in multidisciplinary

classrooms. The project is currently growing the number of

involved educators and improving the quality of connections

that are being made between Arts & Bots and existing cur-

ricula through these teacher collaborations. Through analysis

of future classroom observations and future student assess-

ments, as well as the evaluation of survey and interview data

collected in current pilots, Arts & Bots and the CREATE Lab

Visual Programmer will be used as catalysts for exploring

what factors are important to consider when implementing

robotics projects within different school disciplines.

VIII. CONCLUSIONS

The CREATE Lab Visual Programmer was created in

order to fulfill the goals of the Arts & Bots program by

supporting the creation of complex robot behaviors and

encouraging students to develop technology fluency. In order

to do this, the environment needs to have low barriers to

entry, be compatible with classroom implementation and

support student acquisition of computational thinking skills.

The design of the CREATE Lab Visual Programmer has

achieved these goals by focusing on the key factors of

incorporating real world grounding, live feedback, semantic

debugging aides and the ability to increment the complexity

of software as the student gains skills and confidence. Class-

room observations and student responses have demonstrated

positive gains that will be explored further in the next stage

of the Arts & Bots project.

ACKNOWLEDGMENTS

We gratefully acknowledge the many people who have

contributed to the development of Arts & Bots including:

many members of the CREATE Lab, the educators with

whom we have worked, the June Harless Center for Rural

Educational Research and Development, and Tom Lauwers

of BirdBrain Technologies.

REFERENCES

[1] E. Hamner, T. Lauwers, D. Bernstein, I. Nourbakhsh, and C. Disalvo,
“Robot Diaries : Broadening Participation in the Computer Science
Pipeline through Social Technical Exploration,” in Proceedings of the

AAAI Spring Symposium on Using AI to Motivate Greater Participa-

tion in Computer Science, Stanford, CA, USA, 2008.
[2] H. A. Yanco, H. J. Kim, F. G. Martin, and L. Silka, “Artbotics:

Combining Art and Robotics to Broaden Participation in Computing,”
in Proceedings of the AAAI Spring Symposium on Robots and Robot

Venues: Resources for AI Education, Stanford, CA, USA, 2007.
[3] N. Rusk, M. Resnick, R. Berg, and M. Pezalla-Granlund, “New path-

ways into robotics: Strategies for broadening participation,” Journal

of Science Education and Technology, vol. 17, no. 1, pp. 59–69, Oct.
2007.

[4] E. Hamner and J. Cross, “Arts & Bots: Techniques for distributing a
STEAM robotics program through K-12 classrooms,” in Proceedings

of the Third IEEE Integrated STEM Education Conference, Princeton,
NJ, USA, in press 2013.

[5] CREATE Lab. Code Repository: create-lab-visual-programmer.
Accessed: February 8, 2013. [Online]. Available:
http://code.google.com/p/create-lab-visual-programmer/

[6] M. Burnett, “Software engineering for visual programming languages,”
in Handbook of Software Engineering and Knowledge Engineering

Vol. 2, S.-K. Chang, Ed. Singapore: World Scientific Publishing
Company, 2001, vol. 2, pp. 77–92.

[7] D. Coon and J. O. Mitterer, Introduction to Psychology: Gateways

to Mind and Behavior, 12th ed. Belmont, CA, USA: Wadsworth
Cengage Learning, 2008.

[8] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and K. Christiansen,
“Alice,” in Proceedings of SIGCHI Conference on Human Factors in

Computing Systems. New York, New York, USA: ACM Press, 2000,
pp. 486–493.

[9] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch Programming Language and Environment,” ACM Trans-

actions on Computing Education, vol. 10, no. 4, pp. 1–15, Nov. 2010.
[10] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy-

Hernandez, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosen-
baum, and J. Silver, “Scratch,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, Nov. 2009.

[11] The LEGO Group. LEGO MINDSTORMS Education: NXT
User Guide. Accessed: September 17, 2012. [Online]. Available:
http://www.legoeducation.us/

[12] C. Kelleher and R. Pausch, “Using storytelling to motivate program-
ming,” Communications of the ACM, vol. 50, no. 7, p. 58, Jul. 2007.

[13] B. Erwin, M. Cyr, and C. Rogers, “Lego engineer and robolab:
Teaching engineering with labview from kindergarten to graduate
school,” International Journal of Engineering Education, vol. 16,
no. 2, pp. 1–11, 2000.


